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SLASTIC BENDING OF SHORT MILD STEEL BEAMS
!"f By - o
Dr. M. A. SHAMA, B. Sc., Ph. D. A.M.R.I.N.A.
Lecturer, Marine Engineering Department

INTRODUCTION

\N
Ax

-1

~»ld bending is potentially the most economic method used for
formzz slates and sections. It is widely used in the shipbuilding and
aircr=™ industries. : '

i3 order to study the behaviour of mild steel beams when they are

bent ;= the plastic range of the material, it is necessary to refer to the
stress-iirzin diagram of the material since it is the key to all forming
prob.zms.

This paper deals with the physical nature of the 3-point bending
methd. The relationships between the applied load or bending moment
and the different variables associated with a beam simply supported
and c¢znirally loaded were established in the elastic and plastic regions.
The spring back is also investigated in terms of the initial and final
deformations as well as in relation to the applied force.

[tis to be noted that there is no definite theory which predicts the
precise bzhaviour of mild steel in the plastic range of the material (14)
since all the theories dealing with plastic behaviour are either based on

simplifying assumptions (idsa! plastic material, etc.) or based on
empirical relationships governing the factors which affect the plastic

flow (Tresca Yield-Criterion, ... etc.).

As a result, most of the analysis will be chiefly qualitative rather
than quantitative. Tests were carried out on rectangular section beams
acd some of the results are presented here only for the sake of
cemparison. ' ‘

The text describes the problem in general terms and the mathema-
tical treatment is given in the appendix.
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. Slress — Szr(un D:agram :

In formmg problems, it is general practmc to modlfy the stress—
strain diagram in such a way that it con31sts of only two main regions as
follows, éee fig. (1) :

a.  Elastic Region -

!
In this region, all the stresses and strains are assumed to vanish
upon unloading. The stress-strain relationship is as follows :—

i

= Ee ce e (D
b. Strain Hardening Region
b) Strain Hardening Region :

This region represents the plastic state when the time factor is
not important at room temperature . The slope of the line AB in fig. )
depends on the maximum strain attained and normally decreases as the
strainincreases. In this region, when amemberis loaded so that the applied
stress is oy as shownin fig. (1), the correspoding strainis ¢;. However,
when the load is removed, the unloading curve is- assumed to follow the
line CD, whichis parallel to the elastic line OA (1). This unloading.
process is entirely elastic and is called the ““Elastic Recovery”” or “Spring
back”. Obviously, the magnitude of the spring back depends on the
stress state and the shape of the stess-strain diagram (2). '

From Fig. (1), we have :—

€ = EP-{-ES N )
where : ¢ = total sirain before unloading
ep = permanent strain after unolading

€; = spring back

The stress-strain relationship for the tension zone can be written
as follows :

o :ay-%—(e—e ) tana ce ew (3)
where o = stressin the strain hardening regioni.e. o > o
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€ = strainin the strain hardening regionie. € > ¢

Y
oy, = Yield stress of the material
¢, = Yield strain of the material
!
tan. « ' = rate of strain bardening

Stress and Strain States —
)

In order to satisfy the éompatibility condition, the strain distibu-
tion across the beam depthis assumed to belinear (3), even when bending

W

is carried into the plastic range of the material, i.e. :

PRES
—- -

y
€ = — . (@)
P _
where e = strain at a distance y from the neutral axis.
y = distance from the neutral axis.
p = radius of curvature attained by the neutral axis.

The stress pattern is obtained from equations (3) and (4) and is
given by :

: Yy .
o =9 -}—(———ey) tan. « e ®)
p

Equation (5) gives the stress distribution across the beam depth
when it is simply supported and centrally loaded, see fig. (2).

In the elastic rangc, the stress and strain distributions are linear.
When the load is increased such that the section is partially elastic
and partially plastic, the stress distribution is as shown in fig.(2).
Finally, full plasticity will take place when the load is increased in
such away that plastic flow spreads almost to the neutral axis of the
section. This neutral axis is different from the centroidal axis. The
latter is used only when elastic bending is considered while the former
is used for inelastic bending (4), Howevsr, both axes are obtained
from the following conditions

X F=o0 and M =0
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where ¥ = normal force and M = Bending moment

" Bending Moment — Curvature Relationship :—
Thi§’re1ati0nship is obtained from the bending moment — extreme
fibre strain relationship on the assumption that plane sections before

bending remain plane and norrhal to the neutral axis — i.e :

)

iR

Timoshenko {5) gives a method whereby the bend'ihg morment
- extreme ‘fibre strain relationship could be determined when the true
stress-strain diagram is used. ‘The analysis is complicated, however,
and Nadai (6) gives an approximate method based on a modified
- stressstrain diagram as shownin fig. (1). The accuracy of this method
depends entirely on the accuracy of approximation of the stress-strain
diagram. In the following analysis, Nadai’s method has been used.
The bending moment M is given by :

A, AP
M = [ c.dd.y + S o.dd.y .. .. (6)
(o] (o] : .
where o = stress at adistance y.

= distance from the neutral axis.
A, = area of elastic core.

Ap = area of plastic zone.

See Appendix (1).

If it is assumed that ¢, is the extreme fibre strain, then the
bending morment-extreme fibre strain relationship becomes :

Ip
M =Me+Zp(0y—ey.tana)+(——) e. tan. a .. (7)
¥y ‘ .
where M, = Bendingmomentof the elastic core.

Z, = plastic modulys of the section.
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‘I
Havmg established thxs relationship, it is then p0331ble to determme

1
the M— — relatxonshlp by substituting — for € as follows

p 4 R o L

/ | R

' L. Ip o .

M‘=Me—:—zp(c}€‘-"€ytan.a) 4+ (— ) tana .. (8)
) o p

This equation gives the required bending moment for any value
of the curvature when the yield stress oy, yield strain e, and the rate
of strain hardéning tan a are known, see fig. (4).

Load-Central Deﬂection Relationship —

If the thrée-point bending method, used for forming sections,
could be approximated by a beam simply supported and centrally loaded,
the central deflection could be calculated only when the beam is loaded
into the elastic rang= of the material (i ¢) when:

M < M.j
where MJ, = vield moment.

In this region, the total deflection is due to a combination of
bending and shear, i.e.

47 = Ab +AS
where At = total deflection

4y = defiection due to bending

AS = deﬁéction due to shear
WL L3 K W.L
At = A _—
48E] 4AG

where : W - = applied lcad.

~
f

moment of inertia of the beam section.

L = beam span.
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A = bcam cross-sectional area.

.G = modulus of rigidity.

= Young’s modulus.

/

E
K = shape factor {a constant depending on the shape of

the cross-section).
!

Hence the relationship between the applied load “W”’ and the
total deflection'd, in the elastic range, is given by :

W 1

A L3 KL

48E1 44AG -

 Practically £ = 2.6 G, when Poission’s ratio g = 0.3. Therefore,
equation (9) becomes :

W 4E
= .. .. (10
4, L3 2.6KL

121 A

For a rectangular section of depth and thicknessd and b respectively
we have :

bd3
I = , A =0bd , K= 12
12
w 4ED '
— = - oL (1D
4, L L
(— )3+ 312 (—)
d d
span
From equation (11), it is shown that as the ————— ratio decreases,
-depth

the deflection due to shear becomes more significant and since relatively
deep beams are considered, the deflection due to shear should be taken
into account, see fig. (5).
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.. Timoshenko (7) gives another formula for élastic deflection of

' rectanoular section beams, simply supprted and centrally loaded,
" as follows :

4 4Eb - o B :
— = - N e o 12)
4, L L '
) (— )*+2.85(—)—0.85
d d

_The difference between (11) and (12) is not swmﬁcant when the

L
ratio of — is in the range of from 3—-10 (the working range of cold
d L
forming of deep sections), but becomes very significant when — ratio
d

is of the order of unity (i.e.) when very short beams are considered.

Further, Timoshenko (8) gives a semi-graphical method whereby
the central deflection can be determined when the beam is loaded into
the elasto-plastic region. B.G. Neal (4) also gives another method
whereby the central deflection can be determined using the simple theory
of plastic bending. The maximum deflection calculated by this method
is obtained when the fully plastic moment is attained at midspan.

The total defléction depends not only on the load but on the loading
rate and on the strain history of the material as well as the physical
properties. - Thus there is no method available at present, whereby the

.central deflection can be predicted when the beam is bent well into the
strain hardening range of the material. J.W. Roderick (%) gave the
following statement : ““In attempting an accurate determination of deilec-
tion of a partialily plastic joist, it is not possible to derive mathematical
expressions of manageable proportions directly since the cross section
is not a simple geometrical shape, and because of the need to take the
true stress-strain relationship into account”.

J.W.. Roderick and I.H. Phillips (10) gave a historical review of
investigations bearing upon the several forms of the simple theory of
bending. It was pointed out that for rolled steel sections much further
information about the likely variation in properties across the section
will be necessary before it is possible to apply any of these theories.

In the same way as before, the relationship between the applied
bending moment and the slope at the supports could be obiained. The

237




" total slope at the support in the elastic range of the material for

TR

/. arectangular section is given by :

M EI
- o (13
6 L 6.241
t —— _I[_ -
4 AL

 Equation (13) takes into account the slope due to shear. -
Spring Back

Spring back may be defined as the process of elastic recovery
- which occurs when the appliedload is removed.

In the case of three-point bending, spring back can be defined in
two ways. as follows :—

a) Spring back associated with central deflection or slope at
the support.

b) Spring back associated with strains or curvatures.

A previous knowledge of the amount of spring back would be
very helpfulin predicting the required deformation necessary for forming.

The spring back, unfortunately, depends on the shape of the true
stress-strain diagram, which varies over a wide rarge. Consequently an
empirical relationship, whereby the spring back can be predicted, scems
to be the only solution and can only be achieved by conducting a series
of tests.It is expected that the spring back data will not form a definite
relationship although the theoretical relationship between the applied
load and the spring back is ons valued and independent of time (i.e.) a
linear relationship (3).

The spring back problem for sheet metal has been studied before

on the assumption that the true stress-strain diagram of the material
" 1s known. Schroeder (11) gives a method whereby the) spring back in
its angular phase can be determined graphically and analytically. F.J.
Gardiner (3) gives extensive test data for some elastic materials including
mild steel as well as a simplified mathematical solution. He shows

that spring back data form a band bounded by a lower and an upper
limit.
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beam sxmoly suppo‘ted and centrally loaded is presented as follows :
a) " Sprmg back assocxated thh central deﬁectxon

In the elastic range, when the beam is: Joaded and then unloaded’

there will bé' no permanent deflection (i.c.) the total deﬂectxon w111 be
entirely recovered after unloading; see fig. (6) :

s | (4

where : 8, = springback
i
-4, = imposed ceniral deflection.

On the other hand, when the beam is bent intothe strain hardening
region, the total deflection 4; consists of two components as follows :

4, =38 +58 - | .. (15)

where : & = permanent deflection after spring back
It can be shown that th= relationship between the applied load
W and the associated spring back in the central deflection i.e. W—38;

relationship issimilar to W—4; relationship "as obtained from elastic
bending.

524 4F
- (16)
8¢ L3 2.6KL
_'r_
127 A
W
which 1s a linear relationship. (ie) — = C
Os
where : C is a constant depending on the geometrical properties of
the section. For a rectanguiar section beam, W~—3s rlationship is
given by :
w 4Eb
= .. ... an
8 L L
(

)3 = 302 (—)
d d
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This is dcscnbea as the recovered part of the curvature which -

" takes place after unloading.

A method of evaluating this phase of spring back has been
presented’ by R.G. Sturm and B.J.. Fletcher (12). The relationship

between the bending moment and associatedi spring back in curvature
is given by : !

/ / M e i
— = — .o e (18).
P1 P2 ET : o
!
where : —— = curvature of neutral axis before spring back
P1
1 _ .
= curvature of neutral axis after spring back.
P2
M = applied bending moment.

However, this relationship could be obtained directly from the
_bending moment: curvature relationship, see fig., (7).

From Fig. (7) we have :

I M
= R 5%
Ps EI
1
where : = spring back in curvature
Ps
_ / 1 -
= — — ) .. .. 0
P P2
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From the preceeding theoretical analysis, it is ciear that in order
to calculate the applied load or bending moment required to produce a
certain amount of deformation (central deflection, curvature, .... etc.)
it is necessary to know the precise stress-strain diagram of the material,
(i.e.) yield stress, yield strain and rate of strain hardening (13) as well
as the geometrical properties of the section.
)

However, it is expected that the calculated deformations or forces
will contain some errors, since the methods used are' based on simplifying
assumptions (beam simply supported, linear strain hardening, ... ctc).

In order to assess the degree of accuracy of these calculations,
laboratory tests were carried out. The results of these tests are shown
in figs. (8), (9), (10).’

The variation in the veild stress for shipbuilding mild steel was
found to be between 13.0 — 18.0 tons/inch? with a mean . deviation of
16.15% based on a mean yield stress of 15.5 tons/inch?.

The maximum deviation in the flexural rigidity EI was found to
-be 11.8%

The maximum deviation in the slope of W — 4 curve was found
to be 33.33%.

The maximum deviation in the slope of M —@s curve was found
to be 36.8%.

The maximum deviation in the slope of W — 8§ curve was found
to be 15%.

The maximum deviation in the slope of 4 — & curve was found
to be 3.85%;.

These errors indicate clearly the significant deviation between
the theoretical and experimental results, even when vending is carried -
in the elastic range of the material. Consequently these tests have
obviated the possibility of using these methods to predict the behaviour
of mild steel beams when they are bent in the plastic range of the material.

The detailed analysis of these tests and their results will be published
in a separate paper.
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APPENDIX (1)

In order to establish a theoretical relationship between the applied
Joad or bending moment and the differcnt variables associated with this

method of bending, the following assumptions are used;

}
)

a)’ Stress-strain diagram of the materialis as showninfig. {1)

b) Stress-strain diagram is identical for both tension and

compreséion.

- ¢) Plane sections before - bending remain plane after bernding

and normal to the neutral axis,

ie. e = y/p
where y = distance from the neutral aXis. -
1/p = curvature attained by. neutral axis.
€ = strain attained at the distance y. -

d) Only symmetrical sections are dealt with.

)

.¢) The plane of bending coincides with the axis of symmetry.

f) The neutral axis passes through the centroid of the section.

¢) The material is homogenious and isotropic.

It is necessary to consider both the elastic and plastic regions
"":mc«, although the permanent deformation takes place in the latter region,

the unloading process (spring back) is purely elastic.

A) Bending moment-Extreme fibre strain relaticnship .

. ) . Ae
The bendingmoment M = J - o.dd.y+ S
o fe)
where : A, = area elastic core.
Ap = area of plastic zone.
o = stress at a distance y.

A
P o.dA.y-

(2)
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From the strees-strain diagram Fig. (1) we have :

0 = FEe€u.. for0<e<ey N &)

I

a; Oy—}-(e-ey)tanaforey<e<q

Ao | A
M = I Eeddy + S Plo. - (e- ey) tana] dd4.y
° ° Y (%)

Substituting equation (1) into (4), we get :

. E A — Ip
N , 4P -
M :——Ie—&—(av-eymna). S Apyp—}-—tana (3)
_ P ) ° P
where : I, = moment of inertia of the elastic core.
IP = moment of inertia of the plastic zonees.
}—'p = distance of centroids of plastic zones from the neutral
axis.
I,
h .. (6)
where : M, = bending moment of the elastic core.
h = distance of extreme fibres from neutral axis.
Ay and 4, = area of tensile and compressive plastic zones
respectively.
vy and v, = centroids of 4; and A, respectively.

Equation (6) gives the required bending moment for any section
bentinto the elasto-platic region. Using equations (6) & (1), the bending
moment-curvature relationship could be obtained as follows :

_ Y A
M = Me + (o'y' ‘y tan a.). [y + A2y2] + —tana

(62)

244



where : Zp

= plastic modulus of the section

Equation (6a) could be written as :

M

= Me -+ (oy-ey tana). Zp+

Ip

tana® .. (7)
P .

Equations (6) and (7) are similar and could be represented by
3-different regions, namely :

1. Elastic region.

This 1s reprCSentéd by the elastic line OA, as shown in fig. (4).
The bending moment at the end of this region is obtained when :

The characteristics of this region are given by'the following equations :

o

b)

Slope of the elastic line

M El o
i ) _ e = EZe . . (8)
€ h
1
i) M| — = EI N '
g .

Load at the end of this regicn

My, = o,Z, . o .. .. (10)

When the beam is loaded and then unloaded, there will be 10 permanent
strains and the beam will take its original shape. '

2. Elasto-plastic region

This region is represente dby the curve AB, as shown in fig. (4).
It represents the transition stage between the elastic region, ending at
point A, and the strain hardening region, starting at point B, In this
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region, there will exist a small amount of permanent strains upon
unloading. '

3. Strain hardening region
,
j

This region is represented by the straight line BD, as shown in
fig. (4).and is attained when :
}

1 1
€ >> cy or —_— >> — '
P P
y R

(i.e.) when M, = o in equation (7)

1
where : = curvature attained when My is applied.
Py o
I,
M = (ay-e tana). Zp + . etana .. .. (l1)
h
1
In the case of (M — ——) relationship, equation. (11) becomes:
' P
Iy
M = (ay—eytana)Zp—:-— tana N (VA
p

Equations (11) and (12) are linear equations and have the
following characteristics :

a) Slope
M I
i) = — tan.a = Zetana ’ ... (13)
de o
am
i1 )——-=Iptana=1tana e (1B
1
d(—)
P

b) Intercept on the M—axis = M, = constant
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C My = Z]) (uy——cy tan a)

Zauation (12) could be written as follows :

Ip
{M = cryZp{—— tana—Zp.ey.tana
p
, t %
=MI) ,Iptana (‘————— ; Cy)
P p
Sl Zp = KZe
VA
: 4
vhere: K = Shape factor = ——
- Ze
=d ]p = I when full plasticity is attained.
1 1
oM =M 4 Itanae(— — —)
P P P
p .
1 _
vhere : —— = curvature attained when Mp is applied.
P : ‘
p

‘The bending moment at the point “B”. implies that the
7ally plastic moment has been attained and plasticity has spread through

e 4y

(16)

*:ze beam depth untilit has reached the neutral axis of the section.

In this region, when the beam is loaded and then unloaded, there
vili be a permanent set of considerable magnitude compared to the

:lastic spring back .

2 a = 0.

M =Mp=o¢ Z
p=09 %

vhich is the plastic moment

(17

2

When the material behaves in an ideal plastic fashion {i.e.) when
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